Abstract

Combinations of multi-sensor remote sensing images and machine learning have attracted much attention in recent years due to the spectral similarity of wetland plant canopy. However, the integration of hyperspectral and quad-polarization synthetic aperture radar (SAR) images for classifying marsh vegetation has still been faced with the challenges of using machine learning algorithms. To resolve this issue, this study proposed an approach to classifying marsh vegetation in the Honghe National Nature Reserve, northeast China, by combining backscattering coefficient and polarimetric decomposition parameters of C-band and L-band quad-polarization SAR data with hyperspectral images. We further developed an ensemble learning model by stacking Random Forest (RF), CatBoost and XGBoost algorithms for marsh vegetation mapping and evaluated its classification performance of marsh vegetation between combinations of hyperspectral and full-polarization SAR data and any of the lone sensor images. Finally, this paper explored the effect of different polarimetric decomposition methods and wavelengths of radar on classifying wetland vegetation. We found that a combination of ZH-1 hyperspectral images, C-band GF-3, and L-band ALOS-2 quad-polarization SAR images achieved the highest overall classification accuracy (93.13%), which was 5.58–9.01% higher than that only using C-band or L-band quad-polarization SAR images. This study confirmed that stacking ensemble learning provided better performance than a single machine learning model using multi-source images in most of the classification schemes, with the overall accuracy ranging from 77.02% to 92.27%. The CatBoost algorithm was capable of identifying forests and deep-water marsh vegetation. We further found that L-band ALOS-2 SAR images achieved higher classification accuracy when compared to C-band GF-3 polarimetric SAR data. ALOS-2 was more sensitive to deep-water marsh vegetation classification, while GF-3 was more sensitive to shallow-water marsh vegetation mapping. Finally, scattering model-based decomposition provided important polarimetric parameters from ALOS-2 SAR images for marsh vegetation classification, while eigenvector/eigenvalue-based and two-component decompositions produced a great contribution when using GF-3 SAR images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call