Abstract

Magnetic resonance imaging (MRI) provides a multitude of techniques to detect and characterize myocardial infarction. To correlate MRI findings with histology, in most cases terminal animal studies are performed; however, precise extraction and spatial correlation of myocardial tissue samples to MRI image data is difficult. In this proof of concept study, we present a 3D-printing technique to facilitate the extraction of tissue samples from myocardial regions. Initially, seven pig hearts embedded in formaldehyde were imaged on a clinical 3 T system to define biopsy targets on high resolution ex vivo images. Magnitude images and R2*-maps acquired with a 3D multi-echo gradient echo sequence and 0.58 mm isotropic resolution were used to create digital models of the cardiac anatomy. Biopsy guides were 3D-printed to steer the extraction of myocardial samples. In total, 61 tissue samples were extracted with an average offset of the tissue sample location from the target location of 0.59 ± 0.36 mm. This offset was not dependent on the distance of the target point to the epicardial surface. Myocardial tissue could be extracted from all samples. The presented method enables extraction of myocardial tissue samples that are selected by ex vivo MRI with submillimeter precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call