Abstract

Sugarcane is a globally important plant for both sugar and biofuel production. Although conventional breeding has played an important role in increasing the productivity of sugarcane, it takes a long time to achieve breeding goals such as high yield and resistant to diseases. Molecular breeding, including marker-assisted breeding and genomic selection, can accelerate genetic improvement by selecting elites at the seedling stage with DNA markers. However, only a few DNA markers associated with important traits were identified in sugarcane. The purpose of this study was to identify DNA markers associated with sugar content, stalk diameter, and sugarcane top borer resistance. The sugarcane samples with trait records were genotyped using the restriction site-associated DNA sequencing (RADseq) technology. Using FST analysis and genome-wide association study (GWAS), a total of 9, 23 and 9 DNA variants (single nucleotide polymorphisms (SNPs)/insertions and deletions (indels)) were associated with sugar content, stalk diameter, and sugarcane top borer resistance, respectively. The identified genetic variants were on different chromosomes, suggesting that these traits are complex and determined by multiple genetic factors. These DNA markers identified by both approaches have the potential to be used in selecting elite clones at the seeding stage in our sugarcane breeding program to accelerate genetic improvement. Certainly, it is essential to verify the reliability of the identified DNA markers associated with traits before they are used in molecular breeding in other populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call