Abstract

Face recognition methods are computational algorithms that follow aim to identify a person's image according to the bank of images they have of different people. So far, various methods have been proposed for face recognition, which can generally be divided into two categories based on face structure and based on facial features. Based on this, many algorithms have been introduced and used for face recognition. Genetic algorithm has been one of the successful algorithms for face recognition. In this article, we first briefly explained the genetic algorithm and then used the combination of neural network and genetic algorithm to select and classify facial features The presented method has been evaluated using individual features and combined features of the face region. Composite features perform better than face region features in experimental tests. Also, a comprehensive comparison with other facial recognition techniques available in the FERET database is included in this paper. The proposed method has produced a classification accuracy of 94%, which is a significant improvement and the best classification accuracy among the results established in other studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.