Abstract

Esophageal cancer (EC) is the sixth leading cause of cancer deaths worldwide with a low 5-year survival rate. More effective chemotherapeutic drugs, either new or repurposing ones, are urgently needed. Disulfiram (DSF) is a safe and public domain drug for alcohol addiction treatment and later shown to have anti-cancer capability, especially when administrated together with copper. The present study is to test the hypothesis that a newly developed copper-cysteamine (Cu-Cy) nanoparticles (NPs) can enhance the anti-tumor effect of DSF on esophageal cancer with reduced risk of copper poisoning. Our results showed that Cu-Cy NPs could greatly facilitate DSF to inhibit cell proliferation in cultured human esophageal cancer cells. Interestingly, the combined inhibitory function could be further enhanced when DSF and Cu-Cy NPs were present at an optimal molar ratio of 1:4. The results of the change in physical color, UV-vis absorption and fluorescence spectra, X-ray diffraction patterns, and FTIR spectra from a mixture of DSF and Cu-Cy NPs suggest a possible reaction between DSF and Cu-Cy NPs and the formation of new materials. Furthermore, cellular mechanistic studies revealed that the combination of DSF and Cu-Cy NPs resulted in reactive oxygen species (ROS) accumulation, and blocked nuclear translocation of NF-ƙB (p65) in esophageal cancer cells. Moreover, in xenograft nude mice, combined administration of DSF and Cu-Cy NPs greatly inhibited tumor growth without noticeable histological toxicity, while any single agent at the same doses presented no inhibitory function. Together, this study demonstrates an effective anti-cancer function of combined treatment of DSF and Cu-Cy NPs in vitro and in vivo, which could be a promising new chemotherapy for esophageal cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.