Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignant tumor. Hepatocellular carcinogenesis is closely linked to apoptosis, autophagy, and inflammation. Diosmetin and chrysin, are two flavonoid compounds, exhibit anti-inflammatory and anticancer properties. In this study, the TCGA database was utilized to identify differentially expressed genes between normal subjects and HCC patients. Molecular docking and molecular dynamics analyses were employed to assess the binding affinity of chrysin and diosmetin to key proteins in the PI3K/AKT/mTOR/NF-κB signaling pathway. Western blotting and RT-qPCR were used to measure the protein and gene expression within this pathway. The results indicated that HCC patients had elevated levels of PI3K, AKT, mTOR, and P65 proteins compared to normal subjects, which adversely affected patient survival. Molecular docking and dynamics studies demonstrated that diosmetin and chrysin are effectively bound to these four proteins. Invitro experiments revealed that the combination of diosmetin and chrysin could induce apoptosis, enhance autophagy, reduce inflammatory mediator production, and improve the tumor cell microenvironment by inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. Notably, the synergy score for the combination of diosmetin (25 μM) and chrysin (10 μM) was 16. Thus, the diosmetin-chrysin combination shows promise as an effective therapeutic approach for hepatocellular carcinoma due to its strong synergistic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.