Abstract

The tensile behavior of strain-hardening cement-based composites (SHCC) is usually investigated on macroscopic scale by means of direct tension tests or bending tests. Additionally, the micromechanical properties of the composites are often described based on single fiber tension and pull-out tests. Such investigations, performed both on macroscopic and microscopic scales, are based on ‘classical’ force and displacement measuring techniques. Advanced test methods such as digital image correlation (DIC) and acoustic emission analysis (AE) may facilitate the identification and the analysis of the failure mechanisms in SHCC, which is important for both monitoring loaded SHCC elements and further material development and optimization. In this study, these two techniques are combined to characterize the failure mechanisms of three different types of SHCC in direct tension tests. The results are related to data of stress and strain measurements. It is shown that DIC provides detailed spatially resolved and stress related strain measurements. Furthermore, it is demonstrated that AE allows for the localization of active cracks, quantification of the damage accumulation under increasing stresses, and characterization of the dominant crack bridging mechanisms and failure modes observed in the different types of SHCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.