Abstract

The photoelectrocatalysis (PEC) technique was applied in CO2 reduction using different proportions of Cu, Pd, and Pt supported on graphene nanoribbons (GNR) and deposited on the surfaces of TiO2 nanotubes. Altogether, nine combinations of TiO2-NT/GNR-metal were assembled, although only three of them efficiently promoted the generation of methanol and ethanol in high quantities. Comparison with the photocatalysis, photolysis, and electrocatalysis techniques showed the extremely high efficiency of PEC, which enabled production of methanol and ethanol at levels around 19.2-fold and 44.4-fold higher, respectively, than photocatalysis, the second most efficient technique. The presence of metallic nanoparticles in the system facilitated CO2 reduction due to the trapping of the photogenerated electrons, prolonging their lifetime, lowering the reaction energy barrier for CO2 reduction, and provided active intermediates. Therefore, the assembly of these materials containing low amounts of metals is highly promising, since it can assist in alleviating environmental problems caused by CO2 emissions, while at the same time enabling the energetically efficient generation of compounds of commercial value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.