Abstract
This paper proposes a semantic-based image retrieval approach which refers to the ability of using keywords for searching within image datasets. This is possible by adding some textual metadata, called image annotation. Combination of classification and regression in decision tree (DT) has been employed for multi-labeling image annotation in which, more than one label will be considered for every single tuple. In the proposed approach, all concepts and their corresponding ranks will be stored in each DT leaf node instead of storing only a concept or a rank. We have used a hierarchical network of semantics to achieve a better performance. The main idea behind our approach is that in each leaf node, the system should give a higher rank to concepts with highest degree of purity and details according to prepared hierarchical semantic network. A segmented, feature extracted and annotated image dataset, SAIAPR-TC12, has been used for evaluation. A hierarchy of 256 semantic concepts which have been used in annotation process, made it very suitable for testing the approach. Experimental results confirmed that our approach illustrates better performance in comparison with single-labeling approaches which only assign one class to every single tuple and only support linear relationship among concepts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.