Abstract

Although circulating tumor cell (CTC) enumeration in peripheral blood has already been validated as a reliable biomarker in predicting prognosis in metastatic castration-resistant prostate cancer (mCRPC), patients with favorable CTC counts (CTC < 5/7.5 ml) still experience various survival times. Assays that can reduce patients' risks are urgently needed. In this study, we set up a real-time quantitative polymerase chain reaction (RT-qPCR) method to detect epithelial-mesenchymal transition (EMT) and stem cell gene expression status in peripheral blood to validate whether they could complement CTC enumeration. From January 2013 to June 2014 we collected peripheral blood from 70 mCRPC patients and enumerated CTC in these blood samples using CellSearch system. At the same time, stem cell-related genes (ABCG2, PROM1 and PSCA) and EMT-related genes (TWIST1 and vimentin) were detected in these peripheral blood samples using an RT-qPCR assay. Patient overall survival (OS) and treatment methods were recorded in the follow-up. For patients who received first-line chemotherapy, docetaxel plus prednisone, PSA progression-free survival (PSA-PFS) and PSA response rate were recorded. At the time of analysis, 35 patients had died of prostate cancer with a median follow-up of 16.0 months. Unfavorable CTC enumerations (CTC ≥5/7.5 ml) were predictive of shorter OS (p = 0.01). Also, positive stem cell gene expression indicated poor prognosis in mCRPC patients (p = 0.01). However, EMT gene expression status failed to show any prognostic value in OS (p = 0.78). A multivariate analysis indicated that serum albumin (p = 0.04), ECOG performance status (p < 0.01), CTC enumeration (p = 0.02) and stem cell gene expression status (p = 0.01) were independent prognostic factors for OS. For the 40 patients categorized into the favorable CTC enumeration group, positive stem cell gene expression also suggested poor prognosis (p < 0.01). A combined prognostic model consisting of stem cell gene expression and CTC enumeration increased the concordance probability estimated value from 0.716 to 0.889 in comparison with CTC enumeration alone. For patients who received docetaxel plus prednisone as first-line chemotherapy, positive stem cell gene expression suggested a poor PSA-PFS (p = 0.01) and a low PSA response rate (p = 0.008). However, CTC enumeration and EMT gene expression status did not affect PSA-PFS or PSA response rates. As a result, detection of peripheral blood stem cell gene expression could complement CTC enumeration in predicting OS and docetaxel-based treatment effects in mCRPC patients.

Highlights

  • In the past several years, great progress has been made in the management of metastatic castration-resistant prostate cancer

  • The survival times of patients with high circulating tumor cell (CTC) counts are uniformly poor, survival times for those with low CTC counts vary widely [5, 6]. These limitations may be due to the inability of the CellSearch system to detect CTCs that have undergone epithelialmesenchymal transition (EMT), which results in lost expression of epithelial cell markers and re-expression of stem cell markers

  • We established a set of sensitive, highly reproducible, and fully standardized real-time quantitative polymerase chain reaction (RT-qPCR) assays to detect stem cell markers (ABCG2, PROM1 and PSCA) and EMT markers (TWIST1 and vimentin) in peripheral blood samples derived from metastatic castration-resistant prostate cancer (mCRPC) patients, and we further evaluated whether these markers could complement CellSearch CTC enumeration in predicting prognosis and treatment effect in mCRPC patients

Read more

Summary

INTRODUCTION

In the past several years, great progress has been made in the management of metastatic castration-resistant prostate cancer (mCRPC). CellSearch is the only US Food and Drug Administration (FDA)-cleared device for CTC detection and enumeration, it still has some limitations including a comparatively low detection rate and uncertainty of reliable finding in favorable counts. In this regard, the survival times of patients with high CTC counts are uniformly poor, survival times for those with low CTC counts vary widely [5, 6]. We established a set of sensitive, highly reproducible, and fully standardized real-time quantitative polymerase chain reaction (RT-qPCR) assays to detect stem cell markers (ABCG2, PROM1 and PSCA) and EMT markers (TWIST1 and vimentin) in peripheral blood samples derived from mCRPC patients, and we further evaluated whether these markers could complement CellSearch CTC enumeration in predicting prognosis and treatment effect in mCRPC patients

RESULTS
DISCUSSION
MATERIALS AND METHODS
CONFLICTS OF INTEREST
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call