Abstract

Intracranial electroencephalogram (iEEG) signals are generally recorded using multiple channels, and channel selection is therefore a significant means in studying iEEG-based seizure prediction. For n channels, [Formula: see text] channel cases can be generated for selection. However, by this means, an increase in n can cause an exponential increase in computational consumption, which may result in a failure of channel selection when n is too large. Hence, it is necessary to explore reasonable channel selection strategies under the premise of controlling computational consumption and ensuring high classification accuracy. Given this, we propose a novel method of channel reordering strategy combined with dual CNN-LSTM for effectively predicting seizures. First, for each patient with n channels, interictal and preictal iEEG samples from each single channel are input into the CNN-LSTM model for classification. Then, the F1-score of each single channel is calculated, and the channels are reordered in descending order according to the size of F1-scores (channel reordering strategy). Next, iEEG signals with an increasing number of channels are successively fed into the CNN-LSTM model for classification again. Finally, according to the classification results from n channel cases, the channel case with the highest classification rate is selected. Our method is evaluated on the three iEEG datasets: the Freiburg, the SWEC-ETHZ and the American Epilepsy Society Seizure Prediction Challenge (AES-SPC). At the event-based level, the sensitivities of 100%, 100% and 90.5%, and the false prediction rates (FPRs) of 0.10/h, 0/h and 0.47/h, are achieved for the three datasets, respectively. Moreover, compared to an unspecific random predictor, our method also shows a better performance for all patients and dogs from the three datasets. At the segment-based level, the sensitivities-specificities-accuracies-AUCs of 88.1%-94.0%-93.5%-0.9101, 99.1%-99.7%-99.6%-0.9935, and 69.2%-79.9%-78.2%-0.7373, are attained for the three datasets, respectively. Our method can effectively predict seizures and address the challenge of an excessive number of channels during channel selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.