Abstract

The objective of this study was to clarify the efficiency of a combination of stem cells from human deciduous teeth and carbonate apatite in bone regeneration of calvarial defects. Immunodeficient mice (n = 5 for each group/4 groups) with artificial calvarial bone defects (5 mm in diameter) were developed, and stem cells from human deciduous teeth (SHEDs) and carbonate hydroxyapatite (CAP) granules were transplanted with an atelocollagen sponge as a scaffold. A 3D analysis using microcomputed tomography, and 12 weeks after transplantation, histological and immunohistochemical evaluations of markers of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and cluster of differentiation (CD) 31 were performed. In the 3D analysis, regenerated bone formation was observed in SHEDs and CAP, with the combination of SHEDs and CAP showing significantly greater bone regeneration than that in the other groups. Histological and immunohistochemical evaluations showed that combining SHEDs and CAP enhanced the expression of BMP-2, VEGF, and CD31, and promoted bone regeneration. This study demonstrates that the combination of SHEDs and CAP transplantation may be a promising tool for bone regeneration in alveolar defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call