Abstract
Delayed healing of chronic wounds results in amputation and mortality rates in serious cases. The present study examines the merged wound-restorative efficacy of injectable bone marrow-derived mesenchymal stem cells (BMMSCs) and topical Callyspongia sp. extract in immunocompromised rats. HR-LC-MS analysis of Callyspongia sp. extract tentatively identified twenty-nine compounds (1-29) and highlighted its richness in fatty acids and terpenoids, known for their wound regenerating efficacies. The wound closure was greatly prominent in the BMMSCs/Callyspongia sp. group in contrast to the control group (p<0.001). The RT-PCR gene expression emphasized these results by attenuating the oxidative, inflammatory, and immunity markers, further confirmed by histopathological findings. Additionally, in silico modeling was particularly targeting matrix metalloproteinase-9 (MMP9), a key player in wound healing processes. Computational analysis revealed that compounds 18 and 19 potentially modulate MMP9 activity. The combination of BMMSCs and topical Callyspongia sp. extract holds a promise for regenerative therapy constituting a drastic advance in the wound cure of immunocompromised patients, eventually further safety assessments and clinical trials are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.