Abstract

Effect of calcium and magnesium ions was studied in detail in batch mode in shake flask cultures of two fast growing strains of thraustochytrids (Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1) for biomass and lipid production. These strains were previously isolated from Indian marine biodiversity. Screening of these two strains on different carbon and nitrogen sources revealed the suitability of glycerol over glucose and sodium nitrate over yeast extract for the cultivation of these strains. The presence of higher concentration of glycerol in the medium inhibited the glycerol utilization by the cell thus resulting in lower biomass and lipid production in both the strains. Supplementing media with calcium and magnesium ions promoted glycerol utilization thus resulted in a substantial rise in volumetric production of biomass (55.12gL−1, 48.12gL−1), fatty acid for biodiesel (27.14gL−1, 22.15gL−1) and docosahexaenoic acid (14.57gL−1, 10.12gL−1) with both strains Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1, respectively. Growth profile study of these two strains showed further improvement in production of biomass, fatty acid for biodiesel and docosahexaenoic acid when cultures were extended up to 7days. Finding of this work underlines the importance of calcium and magnesium salts in designing new fermentation strategies to prevent substrate inhibition and achieve high cell density culture under high nutrient concentration especially carbon sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.