Abstract
Plastic production, disposal, and recycling systems represent one of the higher challenges for the planet's health. Its direct consequence is the release of endocrine disruptors, such as bisphenol A (BPA), and its emerging substitute molecules, bisphenol F and S (BPF and BPS), into the environment. Consequently, bisphenols are usually present in human biological fluids. Since BPA, BPS, and BPF have structural analogies and similar hormonal activity, their combined study is urgently needed. The present manuscript studied the effect of the mixture of bisphenols (BPmix) in one of the world's largest human cohorts (NHANES cohort). Descriptive and comparative statistics, binomial and multinomial logistic regression, weighted quantile sum regression, quantile g-computation, and Bayesian kernel machine regression analysis determined a positive association between BPmix and heart disease, including confounders age, gender, BMI, ethnicity, Poverty/Income Ratio, and serum cotinine. Endothelial dysfunction is a hallmark of cardiovascular disease; thus, the average ratio of bisphenols found in humans was used to conduct murine aortic endothelial cell studies. The first results showed that BPmix had a higher effect on cell viability than BPA, enhancing its deleterious biological action. However, the flow cytometry, Western blot, and immunofluorescence assays demonstrated that BPmix induces a differential effect on cell death. While BPA exposure induces necroptosis, its combination with the proportion determined in the NHANES cohort induces apoptosis. In conclusion, the evidence suggests the need to reassess research methodologies to study endocrine disruptors more realistically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.