Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are being used in several consumer products. The high refractive index of nano-scaled titanium dioxide particles allows them to protect from UV radiation, and so, they can be found as one of the main components of cosmetics and suncreens. Many studies have reported the potential toxicological effects associated to TiO2-NPs such as ROS generation, DNA damage, apoptosis and cell cycle arrest, among others. The continuous and systematic use of TiO2-NPs in cosmetic products requires a full comprehension of the risks involving their sustained contact with the human skin. Thus, it is important to evaluate not only the hazardous effects but to elucidate the biomolecular mechanisms involved in such effects. Based on this premises, we have evaluated the potential toxicity of TiO2-NPs using a human epithelial cell culture (HaCaT cells) as in-vitro model, together with different bioanalytical approaches and mass spectrometry-based quantitative proteomics, to gain a deeper insight into the molecular mechanisms of toxicity associated to TiO2-NPs exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.