Abstract

This study aimed to develop a tool for the classification of masses in breast MRI, based on ultrafast TWIST-VIBE Dixon (TVD) dynamic sequences combined with DWI. TVD sequences allow to abbreviate breast MRI protocols, but provide kinetic information only on the contrast wash-in, and because of the lack of the wash-out kinetics, their diagnostic value might be hampered. A special focus of this study was thus to maintain high diagnostic accuracy in lesion classification. Sixty-one patients who received breast MRI between 02/2014 and 04/2015 were included, with 83 reported lesions (60 malignant). Our institute's standard breast MRI protocol was complemented by an ultrafast TVD sequence. ADC and peak enhancement of the TVD sequences were integrated into a generalised linear model (GLM) for malignancy prediction. For comparison, a second GLM was calculated using ADC and conventional DCE curve type. The resulting GLMs were evaluated for standard diagnostic parameters. For easy application of the GLMs, nomograms were created. The GLM based on peak enhancement of the TVD and ADC was as equally accurate as the GLM based on conventional DCE and ADC, with no significant differences (sensitivity, 93.3%/93.3%; specificity, 91.3%/87.0%; PPV, 96.6%/94.9%; NPV, 84.0%/83.3%; all, p ≥ 0.315). This study presents a method to integrate ultrafast TVD sequences into a breast MRI protocol, allowing a reduction of the examination time while maintaining diagnostic accuracy. A GLM based on the combination of TVD-derived peak enhancement and ADC provides high diagnostic accuracy, and can be easily applied using a nomogram. • Ultrafast TWIST-VIBE Dixon sequence protocols in combination with diffusion-weighted imaging allow to shorten breast MRI examinations, while diagnostic accuracy is maintained. • Integrating peak enhancement from the TWIST-VIBE Dixon sequence and the apparent diffusion coefficient into a generalised linear model provides a comprehensible image evaluation approach. • This approach is further facilitated by nomograms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.