Abstract
The frequency of plant transformation can be improved by addition of various chemical into transformation media. In the past, we showed that exposure of tobacco, wheat and triticale explants to ammonium nitrate, cerium and lantanium chloride and potassium chloride resulted in an increase in the frequency of transformation. Here, we tested whether a combination of increased concentrations of the aforementioned salts yielded a higher transformation frequency. We found that exposure to 61.8 mM ammonium nitrate caused a 5.0-fold increase in transformation frequency, whereas exposure to 1.0 μM cerium chloride or 47.0 mM potassium chloride resulted in 1.2- and 2-fold increases, respectively. Exposure to 61.8 mM ammonium nitrate and 1.0 μM cerium chloride led to a 4.8-fold increase in transformation frequency, whereas exposure to 61.8 mM ammonium nitrate and 47.0 mM potassium chloride let to a 5.2-fold increase. Finally, exposure to 61.8 mM ammonium nitrate, 1.0 μM cerium chloride and 47.0 mM potassium chloride produced a 5.1-fold increase. The analysis of the intactness of T-DNA borders showed that plants exposed to ammonium nitrate and a combination of ammonium nitrate with other salts had the more intact right borders and the less intact left borders. The best results were observed when all three salts (ammonium nitrate, potassium chloride and cerium chloride) were used. Thus, we concluded that the addition of cerium chloride and potassium chloride does not substantially improve the transformation rate beyond the improvement observed upon treatment with 61.8 mM ammonium nitrate, but may slightly improve the intactness of T-DNA borders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.