Abstract

Novel g-C3N4/Ag2CrO4/AgI nanocomposites with improved photocatalytic performance under visible light were synthesized by consecutive deposition of Ag2CrO4 and AgI semiconductors over g-C3N4 sheets by refluxing method. The synthesized g-C3N4/Ag2CrO4/AgI photocatalysts were fully characterized by XRD, EDX, SEM, TEM, UV–vis DRS, TGA, FT-IR, and PL instruments. Photocatalytic performance of g-C3N4/Ag2CrO4/AgI (30%) nanocomposite for degradation of RhB was 27.9, 4.0, and 3.1 folds greater than those of the g-C3N4, g-C3N4/Ag2CrO4 (20%), and g-C3N4/AgI (30%) photocatalysts, respectively. The substantially increased photocatalytic performance was related to efficient retardation of the charge carriers from recombination and more absorbing of visible light, due to the synergistic effects of Ag2CrO4 and AgI on g-C3N4. The photocatalytic performance of the ternary nanocomposite did not considerably change after several cycles, indicating that the ternary nanocomposite is stable and it could be reused in successive runs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call