Abstract
The objective of this study is to enhance the expression of a plasmid DNA for mesenchymal stem cells (MSC) by combination of 3-dimensional (3D) tissue engineered scaffolds and non-viral gene carrier. As a carrier of plasmid DNA, dextran-spermine cationic polysaccharide was prepared by means of reductive-amination between oxidized dextran and the natural oligoamine, spermine. As the MSC scaffold, collagen sponges reinforced by incorporation of poly(glycolic acid) (PGA) fibers were used. A complex of the cationized dextran and plasmid DNA of BMP-2 was impregnated into the scaffolds. MCS were seeded into each scaffold and cultured by a 3D culture method. When MSC were cultured in the PGA-reinforced sponge, the level of BMP-2 expression was significantly enhanced by the cationized dextran-plasmid DNA complex impregnated into the scaffold than by the cationized dextran-plasmid DNA complex in 2-dimensional (2D) (tissue culture plate) culture method. The alkaline phosphatase activity and osteocalcin content of transfected MSC cultured in the PGA-reinforced sponge were significantly higher compared with 2D culture method. We conclude that combination of cationized dextran plasmid DNA complex and 3D tissue engineered scaffold was promising to promote the in vitro gene expression for MSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.