Abstract
Metastatic ovarian cancer (MOC) is highly deadly, due in part to the limited efficacy of standard-of-care chemotherapies to metastatic tumors and non-adherent cancer cells. Here, we demonstrated the effectiveness of a combination therapy of GRP78-targeted (TNPGRP78pep) and non-targeted (NP) nanoparticles to deliver a novel DM1-prodrug to MOC in a syngeneic mouse model. Cell surface-GRP78 is overexpressed in MOC, making GRP78 an optimal target for selective delivery of nanoparticles to MOC. The NP + TNPGRP78pep combination treatment reduced tumor burden by 15-fold, compared to untreated control. Increased T cell and macrophage levels in treated groups also suggested antitumor immune system involvement. The NP and TNPGRP78pep components functioned synergistically through two proposed mechanisms of action. The TNPGRP78pep targeted non-adherent cancer cells in the peritoneal cavity, preventing the formation of new solid tumors, while the NP passively targeted existing solid tumor sites, providing a sustained release of the drug to the tumor microenvironment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.