Abstract

A β-carotene rich emulsion with improved physical and chemical stability was obtained in this study, using different types of protein-polysaccharide-polyphenol ternary complexes as novel emulsifiers. The ternary complexes were prepared by covalent or non-covalent binding of soy protein isolate (SPI), β-glucan (DG) and myricetin (MC), which were evidenced to be stable. It was indicated that the emulsion stabilized by covalent complex of SPI, DG and MC, exhibited higher zeta-potential and smaller particle size than those stabilized by non-covalent complex. Furthermore, the covalent complexes prepared from different addition sequences showed different efficiencies in stabilizing the emulsion, in which SPI-DG-MC and SPI-MC-DG-stabilized emulsions possess better stability, emulsifying activity and storage resistance under adverse environmental treatment, with CI values of 62.7% and 64.3% after 25 days, respectively. According to oxidative stability and rheology analysis of the emulsions, it was found that the SPI-MC-DG complex prepared at the ratio of 4:2:1 was more stable with relatively less lipid oxidation products and a tighter stacking structure, and the final LH value was 39.98 mmol/L and the MDA value was 6.34 mmol/L. These findings implied that the ternary complex has the potential to deliver fat-soluble active ingredient by means of emulsion, but which depends on the mode and sequence of the molecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.