Abstract

The application of photothermal therapy (PTT) is greatly limited by the low accumulation of photothermal agents, uneven photothermal distribution, and heat endurance of cancer cells. Worse still, despite PTT enhances immunogenicity, the anti-tumor immune efficacy is still unsatisfactory due to the inefficient immunogenic cell death (ICD) induction and poor infiltration of immune cells. To solve the above problems of PTT, we developed hyaluronic acid (HA) modified hollow copper sulfide nanoparticles encapsulating diethyldithiocarbamate (DDTC) to construct a breast tumor targeting and near infrared (NIR) photo-responsive drug delivery system (D-HCuS@HA), which further combined with losartan to improve the accumulation and penetration in the tumor site. Upon irradiation, D-HCuS@HA realized enhanced PTT and released cytotoxic Cu(DDTC)2 to eliminate heat endurance tumor cells, thereby enhancing anti-tumor effect and inducing effective ICD. Moreover, the combination with losartan could remodel the tumor microenvironment, allowing more T cells to infiltrate into the tumor, and significantly inhibiting the occurrence and development of metastatic tumors. In vitro/vivo results revealed the great potential of D-HCuS@HA combined with losartan, which provides a new paradigm for anti-tumor and anti-metastases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call