Abstract

A rectangular dielectric resonator housed in a cutoff parallel-plate waveguide is used both as a radiating element and microwave power combiner. The resonator is excited by using tuned electrically short monopole antennas to induce a longitudinal electric operating mode. The resonator is then used in conjunction with free-running oscillators in order to provide, via mutual injection locking, stable in-phase power combining. Furthermore, the resonator is arranged such that one of its faces radiates a portion of the power-combined signal. Since the resonator is housed in a cutoff waveguide, the cross-polarization radiation from the antenna is suppressed. It was found that, for a single element, a gain in the azimuthal plane of 5 dB could be achieved and, for a two-element array, a gain of 7 dB was obtained with better than -25-dB cross polarization for each case. The oscillator power-combining efficiency for a single-element antenna (two oscillators) was 91%, and the spatial power-combining efficiency for a two-element antenna array, (four oscillators) was found to be 90%. In addition, it is shown that the presence of the dielectric inserts in conjunction with coupled oscillator dynamics provides moderate overall oscillator phase noise improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.