Abstract

BackgroundCirculating endothelial progenitor cells (EPCs) capture technology improves endothelialization rates of sirolimus-eluting stents (SES), but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome. Therefore, we investigated whether the combination coating of hyaluronan-chitosan (HC) and anti-CD34 antibody applied on an SES (HCASES) can promote endothelialization, while reducing neointimal formation and inflammation.MethodsSirolimus-eluting stents(SES), anti-CD34 antibody stents (GS) and HC-anti-CD34 antibody combined with sirolimus-eluting stents (HCASES) were deployed in 54 normal porcine arteries and harvested for scanning electron microscopy (SEM) and histological analysis. The ratio of endothelial coverage above the stents was evaluated by SEM analysis at 7, 14 and 28 days. The percentage of in-stent stenosis was histologically analyzed at 14 and 28 days.ResultsSEM analysis at 7 days showed that endothelial strut coverage was increased in the HCASES group (68±7%) compared with that in the SES group (31±4%, p=0.02). At 14 days, stent surface endothelialization, evaluated by SEM, showed a significantly higher extent of endothelial coverage above struts in the GS (95 ± 2%) and the HCASES groups (87±4%) compared with that in the SES group (51±6%, p=0.02). Histological examination showed that the percentage of stenosis in the HCASES group was not significantly different to that of the SES and GS groups (both p> 0.05). At 28 days, there was no difference in the rates of endothelial coverage between the HCASES and GS groups. The HCASES group showed less stenosis than that in the GS group (P < 0.05), but it was not significantly different from the SES group (P=0.068).ConclusionsSEM and histology demonstrated that HCASESs can promote re-endothelialization while enhancing antiproliferative effects.

Highlights

  • Circulating endothelial progenitor cells (EPCs) capture technology improves endothelialization rates of sirolimus-eluting stents (SES), but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome

  • The beneficial effect of drug elution is overshadowed by late in-stent thrombosis (LST), caused by delayed re-endothelialization as well as local hypersensitivity reactions potentially related to the drug, the polymer, or both, and this is a potentially fatal complication [4,5,6]

  • The combination of EPC-capture and drug-elution technology, such as sirolimus-eluting stents (SES) with immobilized Anti-CD34 antibody stent (GS) (SES–anti-CD34 stent), has been shown to enhance the degree of endothelial cell coverage compared with an SES alone [10]

Read more

Summary

Introduction

Circulating endothelial progenitor cells (EPCs) capture technology improves endothelialization rates of sirolimus-eluting stents (SES), but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome. The beneficial effect of drug elution is overshadowed by late in-stent thrombosis (LST), caused by delayed re-endothelialization as well as local hypersensitivity reactions potentially related to the drug, the polymer, or both, and this is a potentially fatal complication [4,5,6]. The combination of EPC-capture and drug-elution technology, such as sirolimus-eluting stents (SES) with immobilized GS (SES–anti-CD34 stent), has been shown to enhance the degree of endothelial cell coverage compared with an SES alone [10]. While EPCs improve the percentage of stent strut endothelialization of SESs, endothelial dysfunction is still present, and its long-term consequences remain to be determined, as demonstrated by the occurrence of LST, even with GS [11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call