Abstract
AbstractWe address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint‐wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint‐specific pose space deformation (PSD) to decompose the high‐dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at https://github.com/qiji77/JointNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.