Abstract

The development of multidrug resistance (MDR) to chemotherapy is a major obstacle for the successful treatment of cancer. A number of mechanisms have been postulated to account for MDR in cancer. The most common and best-studied mechanism of resistance is mediated through the drug efflux protein P-glycoprotein (P-gp), which is overexpressed in drug-resistant cancer cells and is responsible for the removal of many chemotherapeutic agents. Therapeutic nanoparticles (NPs) have emerged as an innovative and promising option to combat P-gp-mediated MDR and have shown enhanced therapeutic efficacy and reduced toxicity compared to their small molecule counterparts. This review focuses on recent studies using therapeutic NPs to circumvent P-gp-mediated MDR in cancer therapy. The advantages and strategies by which therapeutic NPs were used to overcome P-gp-mediated MDR in cancer are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.