Abstract

Hydroxycamptothecin (HCPT) is a topoisomerase I inhibitor, and it has been widely used clinically in the treatment of primary liver cancer, gastric cancer, and other tumors. The clinical application of HCPT is limited by its water solubility, and it has certain toxicity to patients with tumor. Therefore, the effective tumor site accumulation of HCPT is necessary. This work studied the inhibitory effect of HCPT on the proliferation and migration of human liver cancer cells (HepG-2) and used carboxymethyl chitosan (CMC) and hyaluronic acid (HA) to modify graphene oxide (GO) as nano-carrier materials, which load HCPT to achieve a drug delivery system for liver tumors with good biocompatibility and high drug loading. HCPT can significantly inhibit proliferation and migration of HepG-2, enhance the release of reactive oxygen species, reduce mitochondrial membrane potential, and induce apoptosis. The GO-CMC-HA/HCPT drug delivery system enabled HepG-2 to uptake more HCPT, thereby inhibiting its proliferation and improving the efficacy of HCPT in vivo and in vitro. This study explored a potential therapy strategy by preparing a GO-based tumor-targeted drug delivery system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call