Abstract
Antibody-based therapeutics, which induce apoptosis of malignant cells by selectively binding to their receptors, hold tremendous promise for clinical cancer therapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received considerable interest due to its favorable capability of activating apoptosis in cancer cells by interacting with death receptors (DRs). However, cancer stem-like cells (CSCs) show deficient or lower DR and are highly resistant to TRAIL-mediated apoptosis limiting the therapeutic efficacy. Here, we report a liposome-mediated acclimatization strategy to overcome the CSC-emanated TRAIL resistance. The liposomal assemblies coencapsulating plasmid DNA encoding TRAIL and salinomycin enable cancer cells as protein generators to express TRAIL, and more importantly, can acclimatize resistant CSCs to be sensitized to the TRAIL-triggered apoptosis by salinomycin-induced upregulation of DR expression on CSCs. This programmable liposome-based drug codelivery system shows the potential to efficiently eliminate CSCs and inhibit CSC-enriched tumor growth in the orthotopic colon tumor mouse model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.