Abstract

Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI—17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call