Abstract
Solution-based processing of two-dimensional (2D) nanomaterials is highly desirable, especially for the low-temperature large-area fabrication of flexible multifunctional devices. MXenes, an emerging family of 2D materials composed of transition metal carbides, carbonitrides, or nitrides, provide excellent electrical and electrochemical properties through aqueous processing. Here, we further expand the horizon of MXene processing by introducing a polymeric superdispersant for MXene nanosheets. Segmented anchor-spacer structures of a comb-type polymer, polycarboxylate ether (PCE), provide polymer grafting–like steric spacings over the van der Waals range of MXene surfaces, thereby reducing the colloidal interactions by the order of 103, regardless of solvent. An unprecedented broad dispersibility window for Ti3C2Tx MXene, covering polar, nonpolar, and even ionic solvents, was achieved. Furthermore, close PCE entanglements in MXene@PCE composite films resulted in highly robust properties upon prolonged mechanical and humidity stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.