Abstract

We have designed and characterized micro-electro-mechanical systems (MEMS) for applications at low temperatures. The mechanical resonators were fabricated using a surface micromachining process. The devices consist of a pair of parallel plates with a well defined gap. The top plate can be actuated for shear motion relative to the bottom fixed plate through a set of comb-drive electrodes. Details on the operation and fabrication of the devices are discussed. The geometry was chosen to study the transport properties of the fluid entrained in the gap. An atomic force microscopy study was performed in order to characterize the surface. A full characterization of their resonance properties in air and at room temperature was conducted as a function of pressure, from 10 mTorr to 760 Torr, ranging from a highly rarefied gas to a hydrodynamic regime. We demonstrate the operation of our resonator at low temperatures immersed in superfluid (4)He and in the normal and superfluid states of (3)He down to 0.3 mK. These MEMS oscillators show potential for use in a wide range of low temperature experiments, in particular, to probe novel phenomena in quantum fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.