Abstract

Drug combinations are increasingly utilized in cancer treatment to enhance drug effectiveness through synergistic therapeutic effects. However, determining the optimal biological dose combination (OBDC) in small-scale drug combination trials presents challenges due to the increased complexity of the dose space. To effectively optimize the dose combination of combined drugs, we propose a model-assisted design by extending the single-agent Bayesian optimal interval phase I/II (BOIN12) design. Our approach incorporates a utility function to balance the trade-off between risk and benefit and directly models the utility of each dose by constructing a quasi-beta-binomial model. A key advantage of our design is the simplification of decision-making during interim periods by considering all possible outcomes and pre-including the decision rule in the protocol. Additionally, we present a time-to-event (TITE) version of our design, employing an approximate likelihood approach to mitigate potential late-onset effects. We demonstrate that our proposed design exhibits robust and desirable operating characteristics across various scenarios through extensive simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.