Abstract

The newly identified complete ammonia oxidation (comammox), which is capable of oxidizing ammonia directly to nitrate, has complemented our knowledge of nitrification in the global nitrogen (N) cycle. However, understanding the contribution and ecological roles of comammox in complex soil environments is still in its infancy. Here, the community structure and function of comammox and the interactions with other ammonia oxidation processes in rhizosphere and non-rhizosphere soils of four different crop fields (maize, cotton, soybean, and millet) were investigated in summer and winter. The only identified comammox species Candidatus Nitrospira nitrificans was widely distributed in all sampled soils. Comammox bacterial abundance was lower than that of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). The measured comammox potential rate ranged from 0.01 ± 0.002 to 0.40 ± 0.02 mg N kg−1 d−1, contributing <19.2 and 22.1% to ammonia oxidation in summer and winter, the remainder being due to AOA and AOB. The potential rate and community composition of comammox bacteria were significantly different on a temporal scale, while crop species and soil types (rhizosphere and non-rhizosphere) showed no obvious influences. In terms of oxidation rates, AOA (1.2 ± 0.7 mg N kg−1 d−1) dominated the ammonia oxidation in agricultural soils over AOB (0.31 ± 0.1 mg N kg−1 d−1) and comammox (0.2 ± 0.1 mg N kg−1 d−1). Both anammox bacterial abundance and activity were below the detection limits, indicating a negligible contribution of anammox in agricultural rhizosphere soils. The identification of comammox bacterial abundance and activity in situ enriches our knowledge of nitrification in agricultural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call