Abstract
The objective of this work was to study the degradation behavior of escitalopram oxalate under different International Conference on Harmonization (ICH)-recommended stress conditions by column liquid chromatography (LC)-UV and LC/mass spectrometry (LC/MS) and to establish a validated stability-indicating LC assay method. Escitalopram oxalate was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal decomposition. Extensive degradation was found to occur in alkaline medium. Mild degradation was observed in acidic and oxidative conditions. Escitalopram oxalate was stable to neutral, photolytic, and thermal stress. Successful separation of the drug from degradation products formed under stress conditions was achieved on a PerfectSil-100 ODS-3 column [C18 (5 microm, 25 cm x 4.6 mm id)] using methanol-0.01 M acetate buffer pH 3.8 adjusted with acetic acid (45 + 55) as the mobile phase. The flow rate was 1 ml/min, and the detection wavelength was 239 nm. The method was validated according to ICH guidelines. Major degradation products formed in hydrolysis and oxidative conditions were isolated, and structural elucidation of degradation products was done by LCIMS and infrared spectrometry studies. The major hydrolysis degradation product was confirmed as 1-(3-dimethylaminopropyl)-1-(4-fluoro- phenyl)-1,3dihydroisobenzofuran-5-carboxylic acid, and the major oxidative degradation product was confirmed as 1-{[3-dimethylamino(oxide)- propyl]-1-(4-fluro-phenyl)}-1,3-dihydro-isobenzofuran- 5-carbonitrile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.