Abstract

<p>Since agriculture and wider development have altered simultaneously runoff, pollution and natural structures in catchments (e.g. wetlands, floodplains, soil drainage, riparian trees) aquatic ecosystems deviate from background concentrations of N and P, but also organic C (OC). Hence mechanistic studies coupling OC, N and P are needed and whilst data coupling OC:N is becoming more available and interpreted this is not yet the case for aquatic OC:P.  Column flow experiments (excluding light) allow preliminary controlled study of microbial biogeochemical processes in benthic sediments exposed to factorial nutrients (here +C, +NP, +CNP using simple dissolved substrates glucose, nitrate, and phosphate).</p><p>Based on the stoichiometric theory, we tested the hypothesis that bioavailable DOC will stimulate the heterotrophic uptake of soluble reactive P (SRP) and dissolved inorganic nitrogen in stream sediments. Glucose-C additions increased nutrient uptake, but also NP additions enhanced consumption of native and added OC. The effects of C addition were stronger on N than P uptake, presumably because labile C stimulated both assimilation and denitrification, while adsorption (unaffected by the presence or not of OC) formed a part of P uptake. Internal biogeochemical cycling lessened net nutrient uptake due to N and P recycling into dissolved organically-complexed forms (DOP and DON).</p><p>Simple column experiments point to mechanisms whereby availability of organic carbon can stimulate N and P sequestration in the bed of nutrient-polluted streams. This should promote further studies coupling OC with N and, especially P, towards better knowledge and ability to incorporate coupled macronutrient cycles into nutrient models and, potentially, ecosystem management.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call