Abstract

A continuous fixed-bed adsorption study was carried out by using phosphonated cross-linked polyethylenimine as an adsorbent for the removal of uranium (U) from aqueous solutions. The effect of inlet metal ion concentration (40, 70, and 100 mg L−1), feed flow rate (1, 2, and 3 mL min−1), and polymer bed height (2.5, 3.2 and 4.5 cm) on the breakthrough characteristics of the fixed-bed adsorption system at pH 2 were studied. The results showed that the breakthrough time appeared to increase with increase of bed height but decreased with increase of both influent U concentration and flow rate. Modelling of the dynamics of the fixed-bed adsorption process was studied and the application of different models to describe the breakthrough curves showed that the Thomas and Yoon–Nelson model gave better results for the operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.