Abstract

Abstract A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal clique of size at least two is monochromatic. The clique-hypergraph, H ( G ) , of a graph G has V ( G ) as its set of vertices and the maximal cliques of G as its hyperedges. A vertex-colouring of H ( G ) is a clique-colouring of G. Determining the clique-chromatic number, the least number for which a graph G admits a clique-colouring, is known to be NP-hard. We establish that the clique-chromatic number for powers of cycles is equal to two, except for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs, we show that their clique-chromatic number is at most four, and determine the cases when it is equal to two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.