Abstract

A dual-mode aptasensor has been developed for the effective detection of Campylobacter jejuni (C. jejuni), a major cause of gastrointestinal disease worldwide. The aptasensor utilizes nanoparticles, specifically a core-shell structure consisting of gold and silver (Au@Ag NPs), along with magnetic nanoparticles (MNPs). When Campylobacter jejuni is introduced, “Au@Ag NPs-Aptamer-Campylobacter jejuni-Aptamer-MNPs” sandwich complexes are formed due to the high affinity of the aptamer for the bacterial surface membrane proteins. The dual-mode aptasensor can magnetically enrich the sample in just 15 min, and the presence of Campylobacter jejuni is determined by observing a color change. Additionally, the concentration of Campylobacter jejuni can be quantified using surface-enhanced Raman spectroscopy (SERS) and standard curves. This results in a wider linear range (1.8 × 101–108 CFU/mL) under optimal conditions, a lower limit of detection (6 CFU/mL), and a higher selectivity for the detection of bacteria compared to previously reported sensors. Compared with traditional microbial culture counting methods, the dual-mode aptasensor does not require Raman reporters. The physical action of magnetic enrichment, along with the application of Au@Ag NPs, improves the accuracy of the dual-mode aptasensor, offering the advantages of convenience and high sensitivity. Moreover, by utilizing different types of aptamers, this aptasensor can be modified to detect a wider range of harmful pathogens in various environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.