Abstract

Colour transfer algorithms aim to apply a colour palette, mood or style from one image to another, operating either in a three-dimensional colour space, or splitting the problem into three simpler one-dimensional problems. The latter class of algorithms simply treats each of the three dimensions independently, whether justified or not. Although they rarely introduce spatial artefacts, the quality of the results depends on how the problem was split into three sub-problems, i.e. which colour space was chosen. Generally, the assumption is made that a decorrelated colour space would perform best, as decorrelation makes the three colour channels semi-independent (decorrelation is a weaker property than independence). However, such spaces are only decorrelated for well-chosen image ensembles. For individual images, this property may not hold. In this work, the connection between the natural statistics of colour images and the ability of existing colour transfer algorithms to produce plausible results is investigated. This work aims to provide a better understanding of the performance of different colour spaces in the context of colour transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call