Abstract

BackgroundTheory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived. The context encompasses all environmental determinants of light availability and propagation, but also the dynamics of perception in receivers. Color vision involves the neural separation of information into spectral versus luminance channels, which often differentially guide specific tasks. Here we explicitly tested whether this discrete perceptual basis contributes to the maintenance of polymorphism in a prey-luring system. The orb-weaving spider Gasteracantha fornicata is known to attract a broad community of primarily dipteran prey due to their conspicuous banded dorsal signal. They occur in two morphs (“white” and “yellow”) which should, respectively, generate greater luminance and color contrast in the dipteran eye. Given that arthropods often rely upon luminance-versus-spectral cues for relatively small-versus-large stimulus detection, we predicted a switch in relative attractiveness among morphs according to apparent spider size.ResultsOur experimental tests used colour-naïve individuals of two known prey species (Drosophila hydei and Musca domestica) in replicate Y-maze choice trials designed to manipulate the apparent size of spider models via the distance at which they are viewed. Initial trials confirmed that flies were attracted to each G. fornicata morph in single presentations. When given a simultaneous choice between morphs against a viewing background typical of those encountered in nature, flies exhibited no preference regardless of the visual angle subtended by models. However, when backgrounds were adjusted to nearer the extremes of those of each morph in the wild, flies were more attracted by white morphs when presented at longer range (consistent with a reliance on achromatic cues), yet were unbiased in their close-range choice.ConclusionWhile not fully consistent with predictions (given the absence of a differential preference for stimuli at close range), our results demonstrate an effect of apparent stimulus size upon relative morph attractiveness in the direction anticipated from present knowledge of fly visual ecology. This implies the potential tuning of G. fornicata morph signal structure according to a perceptual feature that is likely common across their breadth of arthropod prey, and complements recent observational work in suggesting a candidate mechanism for the maintenance of deceptive polymorphism through the exploitation of different visual channels in prey.

Highlights

  • Theory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived

  • Experiments 1 and 2: Spider models versus plain backgrounds Relative to a no-stimulus alternative, white G. fornicata morphs proved attractive to both D. hydei (G8 = 17.76, P = 0.023) and M. domestica (G8 = 27.97, P < 0.001) across a range of apparent model sizes (Fig. 2a)

  • Yellow G. fornicata were attractive to D. hydei (G8 = 28.63, P < 0.001) and M. domestica (G8 = 22.11, P = 0.005), but only once they subtended visual angles >11° across a range of apparent model sizes (Fig. 2b)

Read more

Summary

Introduction

Theory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived. The orb-weaving spider Gasteracantha fornicata is known to attract a broad community of primarily dipteran prey due to their conspicuous banded dorsal signal. They occur in two morphs (“white” and “yellow”) which should, respectively, generate greater luminance and color contrast in the dipteran eye. The effectiveness of signals is shaped by the interaction between viewing environments and the perceptual systems of receivers [12, 13]. White and Kemp BMC Evolutionary Biology (2017) 17:191 the spectral quality and/or intensity of available light will modify the appearance of a given signal design [12]. Selection may favour more precise behavioural delivery of signals [14, 15], restricting displays only to favourable environmental conditions [16], or actively modifying viewing environments [17, 18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call