Abstract
This paper presents a hierarchical modular neural network for colour classification in graphic arts, capable of distinguishing among very similar colour classes. The network performs analysis in a rough to fine fashion, and is able to achieve a high average classification speed and a low classification error. In the rough stage of the analysis, clusters of highly overlapping colour classes are detected. Discrimination between such colour classes is performed in the next stage by using additional colour information from the surroundings of the pixel being classified. Committees of networks make decisions in the next stage. Outputs of members of the committees are adaptively fused through the BADD defuzzification strategy or the discrete Choquet fuzzy integral. The structure of the network is automatically established during the training process. Experimental investigations show the capability of the network to distinguish among very similar colour classes that can occur in multicoloured printed pictures. The classification accuracy obtained is sufficient for the network to be used for inspecting the quality of multicoloured prints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.