Abstract

The spectral sensitivity of the visual system varies markedly between the fovea and surrounding periphery owing in part to the rapid fall in macular pigment density with eccentricity. We examined how colour appearance changes between the fovea and near periphery (8°) by measuring achromatic loci and the loci of unique and binary hues. Chosen colours remained much more similar at the two locations than predicted by the change in spectral sensitivity. Compensation for white may reflect long-term gain changes within the cones that equate sensitivity for the local average stimulus in the fovea and periphery. However, adjusting only to the average stimulus cannot correct for all of the effects of a spectral sensitivity change, and predicts differences in colour percepts between the fovea and periphery that were not observed. The similarities in hue percepts at 0 and 8° thus suggest that additional processes help compensate colour appearance to maintain constancy in the near periphery. We model the results of previous studies to show that similar adjustments are implied by age-related changes in lens pigment, and to show that these adjustments are consistent with previous measurements of peripheral colour appearance based on hue cancellation.

Highlights

  • To provide stable percepts of the properties of lights and surfaces, colour appearance must be compensated for the context in which objects are seen

  • We explored the effects of sensitivity changes across space on colour appearance, which arise from spatial variations in the retina

  • We examined how colour appearance differs between the fovea and a nearby peripheral eccentricity of 88

Read more

Summary

Colour appearance and compensation in the near periphery

We examined how colour appearance changes between the fovea and near periphery (88) by measuring achromatic loci and the loci of unique and binary hues. Chosen colours remained much more similar at the two locations than predicted by the change in spectral sensitivity. Adjusting only to the average stimulus cannot correct for all of the effects of a spectral sensitivity change, and predicts differences in colour percepts between the fovea and periphery that were not observed. The similarities in hue percepts at 0 and 88 suggest that additional processes help compensate colour appearance to maintain constancy in the near periphery. We model the results of previous studies to show that similar adjustments are implied by age-related changes in lens pigment, and to show that these adjustments are consistent with previous measurements of peripheral colour appearance based on hue cancellation

INTRODUCTION
LvsM no compensation
BG G GY Y YR
Findings
DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.