Abstract

The discovery of Dirac semimetal has stimulated bourgeoning interests for exploring exotic quantum-transport phenomena, holding great promise for manipulating the performance of photoelectric devices that are related to nontrivial band topology. Nevertheless, it still remains elusive on both the device implementation and immediate results, with some enhanced or technically applicable electronic properties signified by the Dirac fermiology. By means of Pt doping, a type-II Dirac semimetal Ir1-xPtxTe2 with protected crystal structure and tunable Fermi level has been achieved in this work. It has been envisioned that the metal-semimetal-metal device exhibits an order of magnitude performance improvement at terahertz frequency when the Fermi level is aligned with the Dirac node (i.e., x ∼ 0.3) and a room-temperature photoresponsivity of 0.52 A·W-1 at 0.12 THz and 0.45 A·W-1 at 0.3 THz, which benefited from the excitation of type-II Dirac fermions. Furthermore, van der Waals integration with Dirac semimetals exhibits superb performance with noise equivalent power less than 24 pW·Hz-0.5, rivaling the state-of-the-art detectors. Our work provides a route to explore the nontrivial topology of Dirac semimetal for addressing targeted applications in imaging and biomedical sensing across a terahertz gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.