Abstract

Bistable nanomagnets store a binary bit of information. Exchange coupled nanomagnets can increase the thermal stability at low dimensions. Here we show that the antiferromagnetically (AFM) coupled nanomagnets can be highly stable at low dimensions than that of the ferromagnetically coupled nanomagnets. By solving stochastic Landau–Lifshitz–Gilbert equation of magnetization dynamics at room temperature, we analyze the stability of the exchange coupled nanomagnets in the presence of correlated, uncorrelated, and anti-correlated noise. The results show that the correlated noise can make the stability of the AFM coupled nanomagnets very high. Such finding will lead to very high-density non-volatile storage and logic devices in our future information processing systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.