Abstract

Colossal permittivity (ε′ = 301,484 at room temperature and 1 kHz) of barium titanate was induced in ceramics synthesized using the microwave sintering method. Three different sintering processes (conventional, spark plasma, and microwave) were performed to better understand colossal permittivity in sintered barium titanate. The dielectric permittivity measurements revealed that the appearance of colossal permittivity has strong dependence on the sintering temperature and atmosphere, and less on the grain size of the sintered ceramics. However, the as‐sintered barium titanate samples produced by microwave sintering show high dielectric loss (tanδ > 1) consistent with oxygen reduction during the microwave sintering process and consequent accumulation of oxygen vacancies and associated charge carriers at the grain boundary. Since the highly conductive state of as‐sintered ceramics precludes their use in dielectric applications, thermal annealing at different conditions was performed to recover insulating characteristics. Microwave‐sintered barium titanate with post annealing process (950°C for 12 h in air) showed low dielectric loss (tanδ = 0.045) at room temperature and 1 kHz, while still showing a much higher permittivity (ε′ = 36,055) than conventionally sintered barium titanate (ε′ = 3500).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.