Abstract

Near-field radiative heat transfer (NFRHT) can exceed the blackbody limit by several orders of magnitude owing to the tunneling evanescent waves. Exploiting this near-field enhancement holds significant potential for emerging technologies. It has been suggested that coupled polaritons can give rise to orders of magnitude enhancement of NFRHT. However, a thorough experimental verification of this phenomenon is still missing. Here this work experimentally shows that NFRHT mediated by coupled polaritons in millimeter-size graphene/SiC/SiO2 composite devices in planar plate configuration can realize about 302.8 ± 35.2-fold enhancement with respect to the blackbody limit at a gap distance of 87 ± 0.8nm. The radiative thermal conductance and effective gap heat transfer coefficient can reach unprecedented values of 0.136 WK-1 and 5440 Wm-2K-1. Additionally, a scattering-type scanning near-field optical measurement, in conjunction with full-wave numerical simulations, provides further evidence for the coupled polaritonic characteristics of the devices. Notably, this work experimentally demonstrates dynamic regulation of NFRHT can be achieved by modulating the bias voltage, leading to an ultrahigh dynamic range of ≈4.115. This work ambiguously elucidates the important role of coupled polaritons in NFRHT, paving the way for the manipulation of nanoscale heat transport, energy conversion, and thermal computing via the strong coupling effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.