Abstract

We report on electrical and magnetic properties of a continuous series of solid solutions La0.7(Pb1−xSrx)0.3MnO3 prepared by the pulsed laser deposition technique on LaAlO3 and SrTiO3 single crystals. Strict compositional control enables us to tailor the metal-to-semiconductor phase transition from 266 to 327 K, the maximum of temperature coefficient of resistance from 10.2% K−1 to 3.2% K−1, and maximum of magnetoresistance ratio at 7 kOe from 41% to 17% for x=0 and x=1 correspondingly. The ferromagnetic resonance linewidth ranges from 124 to 300 Oe, indicating low microwave loss and the films uniformity. Noise spectroscopy performed in the 2 Hz–20 kHz range reveals two components: Johnson noise (independent of frequency and bias current) and excess 1/f noise proportional to the square of the bias current. Very low excess noise (normalized value γ/n varying in the range from 10−20 to 10−22 cm3) has been achieved due to the epitaxial quality of the fabricated films. Using these films, an infrared radiation bolometer and weak magnetic field sensor have been built and tested. The bolometer resolves the noise equivalent temperature difference as low as 120 nK/√Hz at 30 Hz frame frequency, while the magnetic field sensor shows the noise equivalent magnetic field difference of 50 μOe/√Hz at 1 kHz and optimum bias magnetic field applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.