Abstract

Colossal low-frequency resonant magnetomechanical (MM) and magnetoelectric (ME) coupling effects have been found in a three-phase composite made of Pb(Zr,Ti)O3 ceramic fibers/phosphor copper-sheet unimorph and NdFeB magnets. The experimental results revealed that the ferromagnetic/elastic/piezoelectric three-phase composite with a cantilever beam structure could show huge bending MM coefficient of ∼145.9 × 10−3/Oe (unit in bending radian per Oe) and ME voltage coefficient of ∼16 000 V/cm·Oe at the first-order bending resonance frequency of ∼5 Hz. The achieved results related to ME effect are at least one order of magnitude higher over those of other ME materials and devices reported ever. The extremely strong MM and ME couplings in the three-phase composite are due to strong magnetic force moment effect induced by the interaction between NdFeB magnets and the applied magnetic field, and further resonant enhancement via the strain-mediated phosphor copper-sheet with a relatively high mechanical quality factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call