Abstract

For materials lacking inversion symmetries, an interband transition induced by a photon may result in excited electrons (holes) experiencing a spatial shift leading to generation of directional photocurrents. This phenomenon known as bulk photovoltaic effect (BPVE) shift photocurrent (SPC) has recently attracted immense attention owing to its potential in generating photovoltages that are not restricted by Shockley-Queisser limitations imposed by materials' electronic band gaps. The BPVE was recently reformulated in a quantum mechanics viewpoint as the change in the geometrical phase upon photoexcitation and can now be promptly calculated from Bloch wave functions generated by first-principles calculations. The SPC of an electron (hole) is robust against crystal defects and impurities both in the interior and the surface and can be less dissipative and ultrafast. Herein, an emergence of colossal SPC in a pristine two-dimensional (2D) single-layer α-SbP crystal is predicted from first-principles calculations. An external electric field is further applied on the 2D crystal, and a large SPC enhancement is achieved. The locations of the SPC peaks due to both in-plane and out-of-plane responses suggest that α-SbP can generate a large photocurrent both in visible-light and ultraviolet regions. Single-layer 2D α-SbP is thus an excellent material for strong SPC. This finding is thus expected to open a pathway to exploring efficient photovoltaic devices based on monolayer α-SbP and similar materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call